

 	Homepage
	News
	Imprint

	FMC Overview
 		Quick Introduction
	Notation Reference
	Metamodel
	Visualization Guidelines
	FMC and UML
	Glossary

	
	FMC Consortium
			Objectives
	Consortium Members

	
	FMC Success Stories
			ArcWay AG
	INTERVISTA AG
	SAP AG

	
	Products
			FMC Stencils
	TAM Stencils

	
	Further Reading
			Homepage of Siegfried Wendt
	Books
	Papers
	Reference Sheets and More
	Apache Modeling Project
	Related Links

	
	Research
			Projects
	Publications
	Activity History

	
	Communication
			News
	FMC Group at XING
	Imprint

	

	Quick Introduction

The Quick Introduction to FMC should give you an idea of what FMC is about and
what it looks like. The main ideas of FMC are explained using one continuous
example. It is a writ instead of slides collection so it is easier to understand
the coherences. This text is also available as download (408.58kB).

What is FMC?

FMC is the acronym for "Fundamental Modeling Concepts", primarily
a consistent and coherent way to think and talk about dynamic systems. It enables
people to communicate the concepts and structures of complex informational systems
in an efficient way among the different types of stakeholders. A universal notation
originating from existing standards, easy to learn and to apply, is defined
to visualize the structures and to communicate in a coherent way. In contrast
to most of the visualization and modeling standards of today it focuses on human
comprehension of complex systems on all levels of abstraction by clearly separating
conceptual structures from implementation structures. FMC is based on strong
theoretical foundations, has successfully been applied to real-life systems
in practice (at SAP, Siemens, Alcatel etc.) and also is being taught in software
engineering courses at the Hasso Plattner Institute for Software Systems Engineering.

This quick introduction will give you an idea of what FMC
is all about by presenting you the key concepts starting with a small but smart
example. Following the example, you will learn about FMC's theoretical background,
the notation and hopefully get a feeling about the way FMC helps to communicate
about complex systems. At first glance you might find the example even trivial,
but keep in mind that this little example presented here may be the top-level
view of a system realized by a network of hundreds of humans and computers running
a software built from millions of lines of code. It would hardly be possible
to efficiently develop such a system without efficient ways to communicate about it.

The example describes different aspects of a travel agency
system. Starting with a top level description of the system, we will shift our
focus towards implementation, while still remaining independent from any concrete
software structures. Hence, do not expect to see UML class diagrams, which
doubtlessly might be helpful to represent the low-level structures of software
systems.

Compositional structures and block diagrams

Figure 1 shows a block diagram representing a model of the static compositional
structure of a travel agency system and its environment. In the upper part of
the block diagram several rectangles are shown, each containing the stylised
figure of a human. The left group are customers of the travel agency interacting
with the reservation system. Reservation orders can be placed, which are transmitted
to the corresponding travel organizations, while the customers are issued their
tickets. To the right are those persons looking for travel information using
the information help desk. This information is provided by the different travel
organizations and is stored in a location symbolized by the big rounded rectangle
labeled "travel information".

This block diagram, like any block diagram, represents
a real or at least imaginable real informational system. The system described
is no more abstract than anything else we consider to be real. Looking at the
system we see components, artifacts of our mind, which relate to tangible distinguishable
physical phenomena. This view applies to our perception of technical devices
and living beings as well as of any composite structure. Thus, an informational
system can be seen as a composition of interacting components called agents.
Each agent serves a well-defined purpose and communicates via channels and shared
storages with other agents. If an agent needs to keep information over time
it has access to at least one storage where information can be observed. If
the purpose is not to store but to transmit information the agents are connected
via channels.

 Figure 1: Block diagram - Travel agency system

Agents are drawn as rectangular nodes, whereas locations
are symbolized as rounded nodes. In particular, channels are depicted as small
circles and storages are illustrated as larger circles or rounded nodes. Directed
arcs symbolize whether an agent can read or write information from or to a storage.

In the example, the arcs directed from the nodes labeled
"travel organization" to the storage node labeled "travel information"
symbolize that the travel organizations write the travel information. Correspondingly
the arc directed from the storage node labeled "travel information"
to the agent node labeled "information help desk" symbolizes that
the help desk reads the travel information. If an agent can modify the contents
of a storage regarding its previous contents, it is connected via a pair of
opposed bound arcs, called modifying arcs. The access of the reservation system
and the travel organization to the customer data storage is an example.

If communication is possible in both directions, the arcs
connecting the agents via a channel may be undirected. Looking at the example,
communication between the help desk and people interested in some information
is visualized that way. A very special but common variant of this case is a
request/response channel where a client requests a service from another agent
and after a while gets its response. To express which side is requesting the
service a small arrow, labeled "R" for request and pointing from client
to server, is placed beside the node symbolizing the channel. Examples are the
channels between the customers and the reservation system.

Dynamic structures and Petri nets

Informational systems are dynamic systems. By looking for some time at the channels
and locations that are used to store, change, and transmit information their
behaviour can be observed. Extended Petri nets are used to visualize the behaviour
of a system on a certain level of abstraction corresponding to a block diagram.

 Figure 2: Petri net - Buying a ticket

Figure 2 shows a Petri net describing the causal structure
of what can be observed on the channel between the travel agency and one of
its customers in our example. Buying a ticket starts with the customer ordering
a ticket. Then the travel agency checks the availability and in case this step
is successful, a ticket may be issued to the customer concurrently with a request
of payment. The customer is expected to issue the payment and when both sides
have acknowledged the receipt of the money or the ticket, respectively, the
transaction is finished.

Petri nets describe the causal relationship between the
operations performed by the different agents in the system. Each rectangle is
called a transition and represents a certain type of operation. The transitions
are connected via directed arcs with circular
nodes called places. Places can be empty or marked, which is symbolized by a
black dot (token). The behaviour of the system can now be simulated by applying
the following rule to the Petri net: Whenever there is a transition with all
its input places marked and all its output places unmarked this transition may
fire, meaning the operation associated with the transition is performed. Afterwards
all input places of the transition are empty and all its output places are marked.

Looking at the Petri net shown in Figure 2, in the beginning
only the transition labeled "order ticket" may fire. This means the
first operation in the scenario described will be the customer ordering a ticket.
Because only the initial marking of a Petri net may be shown in a printed document,
it is necessary to process the net by virtually applying the firing rules step
by step until you get an understanding of the behaviour of the system. This
is very easy as long as there is only one token running through the net.

Common patterns are sequences of actions, loops, and conflicts.
A conflict is given if multiple transitions are enabled which are connected
to at least one common input place. Because the marking of that input place
cannot be divided, only one of the transitions may fire. In many cases a rule
is given to solve the conflict. In those cases predicates labeling the different
arcs will help to decide which transition will fire. For example, different
actions have to be taken depending on the outcome of the availability check.
If the check was successful the travel agency will issue the ticket and request
payment.

In our example issuing the ticket and payment should be
allowed to happen concurrently. Using Petri nets it is possible to express concurrency
by entering a state where multiple transitions may fire concurrently. In the
example we introduce concurrency by firing the unlabeled transition, which has
two output places. Afterwards both transitions, the one labeled "issue
ticket" and the one labeled "request payment", are allowed to
fire in any order or even concurrently. The reverse step is synchronization,
where one transition has multiple input places that all need to be marked before
it is enabled.

Using refinement it is possible to describe single transitions
or parts of the Petri net in more detail. Furthermore, by refining the compositional
structure of the system or by introducing a new aspect additional Petri nets
may become necessary to describe the interaction of the new components.

Value range structures and entity relationship diagrams

Looking at dynamic systems we can observe values at different locations, which
change over time. In our model, agents are responsible for those changes which
have read and write access to these locations forming a commonly static structure,
which is shown in a block diagram. Petri nets give us a visual description of
the agent's dynamic behaviour. To describe the structure and repertoire of information
being passed along channels and placed in storages entity relationship diagrams
are used.

Figure 3 shows an entity relationship diagram representing
the structure of the information, which is found when looking at the storage
labeled "reservations" and "customer data" which both the
"reservation system" and the "travel organizations" can
access (see Figure 1). In the middle of the diagram we see a rounded node labeled
"reservations" representing the set of all reservations stored in
the system. Such a reservation is defined by a customer booking a certain tour,
allocating a certain seat in a certain vehicle. The tour will follow a certain
route starting at some location and ending at some other location. Looking at
the passengers first time customers are distinguished from regular customers.
Independently, passengers can also be partitioned into business and private
travellers. The system also stores which organization has arranged which reservation
and which travel organization realizes which tour.

 Figure 3: Entity relationship diagram - Tour reservations

Using entity relationship diagrams round nodes visualize
different sets of entities, each being of a certain type. The sets in the example
are passengers, business people, tours, vehicles etc. Each of them is defined
by a set of attributes according to its type. Most elements of a sets have one
or more relations to elements of another or also the same set of elements. For
instance, each route has one location to start at and one location to end at.
Each relationship, i.e. each set of relations between two sets of entities of
a certain type, is represented by a rectangular node connected to the nodes
representing the sets of entities participating in the relationship. Thus, there
is one rectangle representing the "starts at" relationship and another
representing the "ends at" relationship. Annotations besides the rectangle
can be used to specify the predicate, an expression using natural language which
defines the relationship.

The cardinality of a relationship expresses the number
of relations of a certain type one entity may participate in. Arrows or small
numbers, respectively, attributing the relationship nodes represent the cardinality.
A simple arrow symbolizes the direction of a functional relationship. Each element
of the set the arrow emanates from is associated to one element of the related
set. Looking at our example the arrow pointing from "seats" to "vehicles"
expresses that every seat belongs to exactly one vehicle. A bi-directional arrow
symbolizes a one-to-one assignment of entities.

If one entity node contains multiple sub-nodes it represents
the union of the entity sets enclosed. Typically the elements of the union share
a common type, an abstraction characterizing the elements of all subsets. For
instance, in the example "first-time customers" and "regular
customers" define the set of "passengers". But we can also distinguish
"business customers" from "private customers", which are
the result of another true partitioning of "passengers". To avoid
visual confusion caused by multiple containment nodes crossing each other these
unrelated partitions are symbolized using a longish triangle.

Sometimes it is helpful to interpret the elements of a
relationship as entities themselves which may participate in further relations.
Such abstract entities may have no direct physical counterpart. They are the
reification of some concrete fact, a statement about the relation among some
given entities. A typical example is the relationship labeled "reservation"
between the sets of "passengers", "tours", and "seats".
Each element of that relationship embodies an entity itself - a reservation
arranged by some travel agency or travel organization.

Entity relationship diagrams may not only be used to visualize
the structure of the information stored in technical systems. They can also
help to gain some understanding of new application domains by providing an overview
of the relations between its concepts.

Levels of abstraction

So far, the system has been described on a very abstract level only reflecting
its purpose. The implementation of most components is still undefined. We see
a high-level structure that also could be explained with a few words. Looking
at the block diagram (Figure 1) we only learn that the customers and interested
people are expected to be humans. Nothing is said about how the reservation
system, the help desk, or the travel organization are implemented, what the
stored information looks like, whether it will be an office with friendly employees
answering questions and distributing printed booklets or an IT system accessible
through the Internet. All that is undefined on the present level of abstraction.

Nevertheless, the model shows a very concrete structure
of the example system. The system structure has been made visual, which highly
improves communication efficiency. There is some meaningful structure you can
point to, while talking about it and discussing alternatives. This would be
inherently impossible if the real system does not exist yet or the system just
looks like a set of technical low-level devices that could serve any purpose.

By refining the high-level structure of the system, while
considering additional requirements, a hierarchy of models showing the system
on lower levels of abstraction is created. Again, the system description can
be partitioned according to the three fundamental aspects that define every
dynamic system - compositional structure, behaviour, and value structures. By
making the relationship between the different models visible (using visual containment
and descriptive text) comprehension of the systems is maintained over all levels
of abstraction. With this approach it is possible to prevent the fatal multiplication
of fuzziness in communicating about complex structures without anything to hold
on to.

Figure 4 shows a possible implementation of the information
help desk and the storage holding the travel information. The storage turns
out to be implemented as a collection of database, mail, and web servers used
by the different travel organizations to publish their documents containing
the travel information. The information help desk contains a set of adapters
used to acquire the information from the different data sources. The core component
of the help desk is the document builder. It provides the documents assembled
from the collected information and from a set of predefined templates to a web
server. People interested in travel agency services can read the documents from
this web server using a web browser. It is not obvious that the reservation
system now has to request travel information from the information help desk
instead of getting it itself. This is an example for non-strict refinement.

We could continue to describe the dynamics and value structures
on that level, afterwards refining or introducing new aspects one more time
and so on. We will not do this here. When to stop this iteration cycle depends
on the purpose of your activities: Maybe you are you going to create a high-level
understanding of the system's purpose, maybe you are discussing design alternatives
of the systems architecture, or estimating costs, or what have you.

 Figure 4: Block diagram - Implementation of the information help desk

Value of abstraction levels

 Knowing the system's structure presented in Figure 1 it is quite easy to understand
the more complex lower-level structure presented now. To ease comprehension
components from a higher-level system view should be projected into the lower-level
system view whenever possible. In case implementation is done by simple refinement
the result will be a containment hierarchy between the nodes representing components
of different levels of abstraction. Without doubt it would be much harder to
understand the example system had it been introduced on the level of adapters,
mail servers, and browsers. It would have been nearly impossible to create a
common understanding without any illustrations at all.

What is special about FMC?

FMC focuses on human comprehension of informational systems. The key is the
strict separation of a very few fundamental concepts which can always be distinguished
when communicating about informational system. Generally one should distinguish
between

	didactic system models serving the communication among humans (focus of FMC) and analytical models serving the methodologically derivation of consequences,
	system structure and structure of system description (e g, program structure), and
	 purpose and implementation.

Essential about FMC is to differentiate between

	compositional, dynamic, and value range structure,
	active and passive components, and
	control state and operational state.

FMC provides the concepts to create and visualize didactic
models enabling people to share a common understanding of a system's structure
and its purpose. Therefore FMC helps to reduce cost and risk in the handling
of complex systems.

 Homepage |
 News |
 Contact |
 Imprint

